williamhill在线体育投注-最正规平台

20年 过滤净化生产经验

先进真空烧结生产线·精密检测设备

应用广泛 精度稳定 纳污量大 自主研发
烧结毡折叠滤芯表面与高速旋转的冷轮接触
发布时间:2021-10-14 浏览量:142次


烧结毡折叠滤芯有以下优点:

1.能较好承受热压力及冲击。

2.再生能力强,使用寿命长。

3.能较好的承受热应力和冲击,能在较高温度下和腐蚀介质中工作,可焊接、粘结及机械加工。

4.烧结毡折叠滤芯渗透稳定,过滤精度高。

5.烧结毡折叠滤芯强度高,塑性好,抗氧化,耐腐蚀,组装性好,能较好的承受热应力和冲击。

 6.烧结毡折叠滤芯抗急冷急热,比纸质、铜丝网及其它纤维布等做成的过滤器性能优越,且装拆清洗方便。
不锈钢金属烧结毡中金属纤维的制备方法

    (1)熔体纺丝法:这是一种普遍用来生产玻璃纤维及合成纤维的方法,已成功地用于生产铝、锡、锌及铅等低熔点金属的纤维,可制出直径为25~250um的长纤维。但传统的熔融纺丝法不能简单地用于高熔点金属,因这些液态金属的表面张力大,故从喷丝孔喷出的液态金属丝很快断开变成球状,因此难以制出具有一定长度的金属纤维。采取以下措施可在不同程度上解除这种困难:一是利用间接物理方法使喷流稳定,二是改变液体喷流的表面状态,三是加速喷出金属的热量转移,使液态纤维在球化之前即凝固。
    (2)悬滴熔体牵引法:不锈钢金属纤维烧结毡采用这种装置主要为加热器和激冷轮两个部分。金属线在加热器内熔化形成液滴,液滴表面与高速旋转的冷轮接触,以105℃/s的冷却速度凝固,并由激冷轮的离心力作用而抛出,金属线逐渐送入加热器形成连续的生产过程。所得小直径(25~75/um)的金属纤维基本呈圆形,大直径的金属纤维则呈弯月状。
       烧结毡折叠滤芯使用注意事项
       1、高温合金粉末烧结毡折叠滤芯属消耗品,虽比其它过滤元件耐用,但在清洗和拆装过程中应注意不要划伤及碰、砸、摔等现象,防止人为损伤。严禁用工具对滤芯表面施力。
       2、一般情况下滤液由滤芯外向里过滤,不提倡反向过滤。
       3、过滤时,缓缓加压至需要的工作压力,严禁瞬间开足阀门迅速增压。
       4、很大工作压力≤3MPa过滤效率低于50%时,要及时用洁净空气或洁净液在线反吹反冲洗。
       5、高温合金粉末烧结毡折叠滤芯在进行反吹和反冲洗时,一般先用纯净气体反吹,反吹压力是工作压力的1.2-1.5倍,每次反吹时间3-5秒,反复操作4-6次后用洁净液进行反洗,反洗3-5分钟,2-3操作次。
       6、如烧结毡折叠滤芯在线反吹反冲洗后,压损仍较为严重,要及时拆下来进行清洗。
烧结温度对纤维烧结毡的影响

烧结工艺是影响金属纤维烧结毡微结构的一个关键过程,而烧结温度是金属纤维烧结毡工艺**重要的参数,本文以6 μm纤维毡为例进行分析。6 μm纤维毡在这3种温度下都有明显的烧结颈,但是在3种温度下纤维烧结毡展现了3种不同的形貌。a是6 μm纤维在1 200 ℃烧结后形成的烧结颈,上下2根垂直的纤维在相切处形成烧结颈,且烧结毡的直径大于纤维直径,但是2根纤维没有熔合的趋势;当烧结温度为1 250 ℃时,2根垂直纤维的烧结毡直径比1 200 ℃时更大,且烧结毡附近处纤维有熔合的趋势,这反映了烧结毡处形成的新晶界通过晶界扩散同时向上下2根纤维推进,且烧结毡附近纤维直径有所收缩,这可能是因为随着烧结温度的升高,金属原子沿着纤维长度方向扩散至烧结毡处,导致纤维直径收缩,而1 200 ℃的纤维烧结毡没有此现象;当烧结温度为1 300 ℃时,烧结毡附近的纤维有明显的融合,这是由于烧结温度继续升高,晶界扩散更快,烧结毡附近纤维中物质扩散到新晶粒中,从而熔合在一起,此时烧结毡处纤维也有比较明显的收缩,6 μm纤维毡在1 300 ℃时无熔断。

纤维烧结毡搭接点的焊接是通过扩散进行的。烧结初期,相互接触的纤维搭接点逐渐形成烧结毡的连接,此时搭接点是不连续的,且有大量孔隙,扩散的主要机制是表面扩散;烧结中期,烧结毡的孔隙逐渐消失,烧结毡逐渐形成晶界,此时扩散的主要机制是晶界扩散;烧结后期,烧结毡附近晶粒开始长大,此时晶粒长大体扩散是主要机制。扩散的实质是原子的热运动,温度显著影响着原子扩散速度,对于表面扩散来说,只有当烧结温度足以使纤维表面原子的热运动克服表面能垒时,才能形成烧结毡,因此纤维烧结毡应超过一定温度。同样,烧结温度影响着纤维原子晶界扩散的速度,烧结温度越高晶界扩散速度越快,纤维烧结毡速度越快;但是过高的烧结温度会使纤维出现晶粒过大、丝径收缩和过熔等缺陷,这是纤维烧结毡工艺需要避免的。
为什么不锈钢烧结毡会出现白点?
 
  1.白点的出现是凝固过程中炼钢过程中钢水中吸收的氢沉淀的结果。 铸锭和铸钢具有许多可容纳空气的大内部孔隙,并且氢气在沉积时不会引起大的内应力。
 
  对白斑不敏感。 锻造零件后,锻件内部压实,锻造较大的空气保持孔。 在冷却过程中,沉淀的氢原子与锻件内部的一些微孔中的成分结合(或与钢中的碳反应形成甲烷CH4)并产生相当大的压力(当钢中氢的质量分数为0.001%时) 在400℃时,该压力可以达到1200Pa或更高),金属膨胀,产生裂纹并膨胀。
 
  2.白点,也称为氢脆,是大型锻件的主要缺陷,主要发生在中碳合金钢(马氏体和珠光体钢)的锻件中。 锻造尺寸越大,白点越容易形成。
 
  锻造对白点敏感的大型钢锻件,特别是锻件,如转子和发电站的叶轮,应特别小心。 白点的特征在于在纵向裂缝上具有圆形或椭圆形形状和直径几微米至几十毫米的银色斑点,并且在白点附近没有塑性变形。 裂缝的来源是平行于轴线的平滑圆形区域。
 
  3.白点的形成与压力有关。 当奥氏体转变为马氏体并分解成珠光体时,产生内应力。 铁素体钢和奥氏体钢由于冷却不发生相变,并且没有组织应力,因此通常不会出现白点。
 
  尽管钢在冷却过程中具有较大的结构应力,但这些钢中稳定的氢化物和复合碳化物的形成阻碍了氢的沉淀,并且不会产生白点。

 


备案号: